

Past Papers Int 2 Chemistry

2006 Marking Scheme

Grade	Mark Required		° condidates cabiavina anada
Awarded	(/80)	%	% candidates achieving grade
Α	59+	74%	36.6%
В	51+	64%	19.8%
С	43+	54%	19.2%
D	39+	49%	5.7%
No award	∢39	<49%	18.7%

Section:	Multiple Choice		Extended Answer		
Average Mark:	21.1	/30	31.2	/50	

2006 Int2 Chemistry Marking Scheme					
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning		
1	D	83	☑A Aluminium is in group 3 and is not a Group 1 Alkali Metal ☑B Calcium is in group 2 and is not a Group 1 Alkali Metal ☑C Copper is a transition metal and is not a Group 1 Alkali Metal ☑D Sodium is in group 1 and is a Group 1 Alkali Metals		
2	A	63	Solute Lemon Juice carbon dioxide Solvent Water The liquid which does the dissolving Solution Lemonade The mixture produced when solute dissolves in solvent		
3	С	80	Mass number \rightarrow 23 Atomic number \rightarrow 11 Mass number = no of protons + neutrons Atomic number = no of protons		
4	С	68	 ☑A Nitrogen has the electron arrangement of 2,5 and is found in group 5 ☑B Oxygen has the electron arrangement of 2,5 and is found in group 6 ☑C Fluorine has the electron arrangement of 2,7 and is a group 7 Halogen ☑D Neon has the electron arrangement of 2,8 and is a group 0 Noble gas 		
5	В	82	Isotopes Same atomic number but different mass number Same number of protons but different number of neutrons		
6	Α	73	✓ A Lead is a metal and fluorine is a non-metal : ionic bonding in compound B sulphur and oxygen are both non-metals : covalent bonding in compound C carbon and nitrogen are both non-metals : covalent bonding in compound D phosphorus and chlorine are both non-metals : covalent bonding in compound		
7	D	66	 ☑A Chlorine atoms have electron arrangement 2,8,7 ∴ Cl⁻ is 2,8,8 ☑B Sulphur atoms have electron arrangement 2,8,6 ∴ S²⁻ is 2,8,8 ☑C Argon atoms have electron arrangement 2,8,8 ☑D Sodium atoms have electron arrangement 2,8,1 ∴ Na⁺ is 2,8 		
8	С	71	Write down Formulae of ions Write down Valency below each ion Al SO4		
9	В	71	gfm $C_6H_{12}O_6 = (6\times12) + (12\times1) + (6\times16) = 72 + 12 + 96 = 180g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{18}{180} = 0.1 \text{ mol}$		
10	A	76	☑ A gfm $SO_2 = (1\times32) + (2\times16) = 32 + 32 = 64g$ ∴ mass = no. of mol/gfm = $^{12.8}/_{64} = 0.20$ mol ☑ B gfm $CO = (1\times12) + (1\times16) = 12 + 16 = 28g$ ∴ mass = no. of mol/gfm = $^{12.8}/_{28} = 0.46$ mol ☑ C gfm $CO_2 = (1\times12) + (2\times16) = 12 + 32 = 44g$ ∴ mass = no. of mol/gfm = $^{12.8}/_{44} = 0.29$ mol ☑ D gfm NH ₃ = $(1\times14) + (3\times1) = 14 + 3 = 17g$ ∴ mass = no. of mol/gfm = $^{12.8}/_{17} = 0.75$ mol		
11	В	89	catalytic converter carbon monoxide $ ightarrow$ carbon dioxide converter converter converter carbon dioxide $ ightarrow$ carbon dioxide + water		

			Property	Petroleum Gas	Gasoline	Kerosene	Light gas Oil	Heavy Gas Oil	Residue
12	N	44	Viscosity	Low	←				High
12	U	66	Evaporation	Quickly	—			<u> </u>	Slowly
			Flammability		-			—	Low
			Boiling Point	Low	←				High
			✓ A Both mole						
13	A	43	☑B Although t ☑C Isomers h						
		. •	⊠ D Isotopes					•	ie sunie
			E 0 13010pes		Correct gen			unibei	
14	В	86	If n	=3: 2n = (2x3) =		: 2n = (2x4) = 1		2n = (2x5) = 10)
- '				C₃H ₆ O		C ₄ H ₈ O		C ₅ H ₁₀ O	
			⊠ A ester sho	wn is ethyl e	thanoate				
15	В	41	☑B ester sho						
15	D	41	⊠ C ester show		•				
			⊠D ester sho				1	((()	
							•		ible bond
16	$\boldsymbol{\mathcal{C}}$	72	☑C Hydrocarl						1
	_		⊠D Hydrocar						•
47	_	0.4	,						
17	В	94		$C_{22}H_4$	6	→ C ₁₈ I	1 ₃₈ + (-4H8	
			⊠ A Cracking: la	-	•			saturated hyd	rocarbons
18	C	75	B Dehydration		_			212	
		, 5	☑C Distillation: ☑D Hydrolysis:					oiling points	
				F Edking down	. 411.	-		Н	CN
4.0	A		c = c	-c	C-C-C	-c-c	-c-	- C-	C —
19		A 85	85		إ		
				CU. F			•	Н	COOCH3
			Monomen	-	COOCH3	Polymer	COOCH₃	Repeat	ing Unit
00		17				•			
20	C	67	Hormones,	including i	nsulin, can	be made	of protei	n	
			■A Hydration						
21	D	D 50	☑B Hydrolysis	•		_			
			区 Dehydrati			•			at the init
			☑D Condensa [.] ☑A Ethanol is						
	_	04	⊠ B Glucose is	•		_		or and car bo	ii dioxide
22	C	81	☑C Glycerol a	•			_	fats & oils	
			⊠D Propanol i	•			•		l bonds
			☑A Hydrogen					•	•
23	A	A 79	☑B Hydroxide						
			区C At pH=6,			_			
			⊠D Hydrogen					ea trom pH=	5 то pH=6
24	A	56	A base is a	chemical w Metal Hyo		ralises an Metal Oxide	ACIA: Metal Car	honate	
- '	<i>/</i> \			Metal Hyd (Alka		viciui Oxiue	meiul cur	DUNUIE	

25	D	83	☑A Condensation: physical change where a gas turns into a liquid ☑B Distillation: separates liquids with different boiling points ☑C Evaporation removes water from a solution and solid is left behind ☑D Filtration: separates insoluble solids from liquids
26	A	76	Silver - Copper has the closest pairing of metals on the electrochemical seriessilver - copper cell has the smallest voltage
27	C	55	$oxed{\mathbb{Z}}$ A Copper ions are reacting into copper atoms at the negative electrode $oxed{\mathbb{Z}}$ B Copper ions are reacting into copper atoms at the negative electrode $oxed{\mathbb{Z}}$ C Copper ions gain electrons (reduction) to become copper atoms: $Cu^{2+} + 2e^- \rightarrow Cu$ $oxed{\mathbb{Z}}$ D Copper ions gain electrons (reduction) and do not lose electrons (oxidation)
28	В	58	■ A Lead is too reactive to made my heating lead oxide alone □ B Mercury is an unreactive metal and can be made my heating mercury oxide □ C Tin is too reactive to made my heating tin oxide alone □ D Zinc is too reactive to made my heating zinc oxide alone
29	D	70	☑A Galvanising involves attaching zinc to steel not magnesium to steel ☑B magnesium is not electroplated onto steel ☑C Magnesium is too reactive to be a barrier protection as it will corrode too fast ☑D Magnesium is more reactive than steel and provides sacrificial protection
30	D	49	 ☑A Iron nail rusts to protect the copper by sacrificial protection ☑B Iron nail rusts to protect the tin by sacrificial protection ☑C Attaching the iron nail to the positive electrode increases the nail rusting ☑D Attaching the iron nail to the negative electrode gives cathodic protection

2006 Int2 Chemistry Marking Scheme						
Long Qu	Answer	Reasoning				
1a	Acid rain damages plant/marine life	Non-metals dissolve in water to form acids, e.g. CO_2 and NO_2 Acid rain formed in atmosphere damages marine and plant life and damages metal and carbonate rock structures				
1b(i)	$2CH_3SH + H_2$ \downarrow $C_2H_6 + 2H_2S$	$2CH_3SH + H_2 \longrightarrow C_2H_6 + 2H_2S$				
1b(ii)	445° <i>C</i>	Data Booklet information gathering question				
2a	Shared pair of electrons between 2 atoms	Covalent bonding usually takes place between two non-metal atoms. The 2 atoms share electrons to form pairs and each atom has a full outer shell.				
2b	H N H H Trigonal Pyramidal shape	Four shapes to learn area: H—CI H H H Iinear angular trigonal pyramidal tetrahedral				
2c(i)	X = blue Y = red	Ammonia dissolves in water on pH paper to form ammonium hydroxide pH paper at X turns blue Fumes of hydrogen chloride gas dissolve in water on pH paper to form acid pH paper at Y turns red				
2c(ii)	Ammonium chloride	ammonia + hydrogen chloride → ammonium chloride NH ₃ (g) + HCl(g) → NH ₄ Cl(s)				
3a	2-	Formula Ionic Formula Charge on oxide ion Fe_2O_3 $(Fe^{3+})_2(O^{2-})_3$ O^{2-}				
3b	$Fe^{3+} + 3e^{-} \rightarrow Fe$	Fe ³⁺ ions at start and Fe atoms at end of reaction. Three electrons must be gained by the Fe ³⁺ ions to become Fe atoms				
3c	26 30 23	Number of protons = atomic number = 26 Number of neutrons = mass - atomic number = 56 -26 = 30 Number of electrons = no of protons - charge = 26 - (+3) = 23				
4 a	Beaker contents go cloudy	PPA 1.2 Question The sulphur produced by the chemical reaction builds up in the beaker eventually making the mixture cloudy enough to stop the 'X' from remaining visible through the beaker.				
4b	Line graph including:					
4c(i)	0.050 s ⁻¹	Answer has ± half box error allowed				
4c(ii)	8	Rate= $\frac{1}{\text{time}}$ Time = $\frac{1}{\text{rate}}$ = $\frac{1}{0.125}$ = 8s				
4d	To keep depth of solution the same	PPA 1.2 Question It is important to keep all variables the same, except the one you are altering in the experiment, and using the same beaker keeps the depth of the solution the same in each experiment.				
5α	Carboxyl group	Alcohols have the hydroxyl functional group of -OH Carboxylic acids have the carboxyl functional group of -COOH				

		gfm of $CH_3OH = (1\times12) + (4\times1) + (1\times16) = 12 + 4 + 16 = 32g$						
		no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{16}{32} = 0.5 \text{ mol}$						
		-						
5b	30g	$CH_3OH + CO \longrightarrow CH_3COOH$						
	3	1mol 1mol						
		0.5mol 0.5mol						
		gfm $CH_3COOH = (2\times12) + (4\times1) + (2\times16) = 24 + 4 + 32 = 60g$						
		mass = no. of mol \times gfm = 0.5 \times 60 = 3.18g Food Type Importance to Diet						
	Provide body	Carbohydrates						
6a	with energy	Fats Provide body with energy						
	3,	Proteins Needed for body growth and tissue repair						
	Carbon	Food Type Carbon Hydrogen Oxygen Nitrogen						
6b	Hydrogen	Carbohydrates 🗸 🗸 🗴						
	Oxygen	Fats V V X Proteins V V V						
		Proteins 🗸 🗸 🗸						
	starch	Test for Starch: Iodine turns starch blue/black						
6c	sucrose	Test for Glucose: warm Benedict's Solution turn brick red with glucose						
	glucose							
	НН							
	11.	Ethanol is a 2 carbon structure.						
7a	H-C-C-OH							
		Ethanol is an alcohol with a hydroxyl -OH functional group						
	нн							
		нн нн						
		$H H H H H$ $H-C-C-OH \longrightarrow C = C + H_2O$						
7b(i)	Water	$H-C-C-OH\longrightarrow C=C+H_2O$						
		нн нн						
7b(ii)	To prevent	At the end of the experiment, the hot air in the test tube starts to contract back to its original size. This reduction of volume sucks cold water up the delivery tube. If cold liquid						
/ D(II)	suckback	comes into contact with the hot glass of the test tube, it could crack/shatter.						
	Catalyst is in a	Type of Catalyst Definition						
7b(iii)	different state to	Homogeneous Catalyst in same state as reactants						
	the reactants	Heterogeneous Catalyst in different state from reactants						
7b(iv)	19	Catalyst is not used up during the experiment and full mass of catalyst is						
, 5(14)	±3	left over at the end of the experiment.						
8a(i)	Methylpropane	2-methylpropane: -CH3 methyl group on a 3 carbon main alkane chain. As methyl group can only be located on carbon number 2, methyl group does not						
	Memyipi opune	require to be numbered.						
8a(ii)	Addition	Alkane molecule adds across the double bond						
Ju(II)								
	H H	H H H						
OL								
8b	$H-C-C=CH_2$	Propene is the alkene reactant in this reaction: $H - C - C = C - H$						
	H	 						
	• •							

9a(i)	condensation	Condensation reactions have 2 smaller molecules join up to make a larger molecule with a small molecule like water remove at the join.			
9a(ii)	Amide link	Amide links are found in polyamides e.g. nylon Peptide links are found in proteins $\begin{array}{c c} O & H \\ & \\ -C-N- \end{array}$			
9a(iii)		If monomers only had one functional group, the molecule would not be able to extend to become a polymer with thousands/millions of monomers joined together.			
9b	Strength or toughness	Kevlar is a very strong yet lightweight polymer used in bullet-proof vests.			
10a	glows red or glows brightly	Zinc is more reactive than copper but not as reactive as magnesium. The description of zinc's reaction with oxygen would be somewhere between than of magnesium and copper.			
10b	To place magnesium, copper and zinc in order of reactivity	PPA Question			
10c	Do not look directly at the burning magnesium	Magnesium is used in flares because of the very bright light emitted.			
11a	Precipitation	$Pb(NO_3)_{2(aq)} + 2KI_{(aq)} \longrightarrow PbI_{2(s)} + 2KNO_{3(aq)}$ soluble soluble insoluble soluble			
11b(i)	$Pb^{2+}+2I^{-} \rightarrow Pb^{2+}(I^{-})_{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
11b(ii)	Spectator ions	Ions which appear on both sides of the equation are called spectator ions as they do not take part in the reaction.			
12a	exothermic	Exothermic reactions: reaction which gives out (heat) energy Endothermic reaction: reaction which takes in heat from the surroundings			
12b(i)	Hydrogen is flammable	The hydrogen gas could mix with oxygen from air and cause an explosive mixture to be formed.			
12b(ii)	oxidation	Oxidation is loss of electrons (electrons after the arrow) Reduction is gain of electrons (electrons before the arrow)			
12c	Magnesium is more reactive than iron and Mg loses electrons to the iron	Magnesium reacts quicker when in contact with iron. All reactions of			
13a(i)	0.1	no. of mol = volume × concentration = 0.1 litres × 1 mol l ⁻¹ = 0.1 mol			
13a(ii)	0.3	citric acid + sodium hydrogencarbonate 1mol 0.1mol 0.3mol			
13b(i)	Partial dissociation of H ⁺ ions in water	Strong acids have full dissociation of H ⁺ ions. Weak acids only have partial dissociation of H ⁺ ions from molecules			
13b(ii)	Answer to include:	Description of any method which shows difference • reaction with a metal or metal carbonate • conductivity • pH 1 mark Indication of the result that would be expected for test selected			